Viļņi un raksturlielumi
Vilnis ir svārstības, kas izplatās vidē. Mehāniskie viļņi izplatās elastīgajās vidēs, t.i. vidēs, kas sastāv no savstārpēji saistītām daļiņām. Ja kāda vides daļiņa sāk svārstīties, tā iesvārstā arī blakus esošas daļiņas, tās, savukārt, iesvārsta savus kaimiņus utt.: vidē izplatās vilnis.
Ir svarīgi saprast, ka vilnis nepārnes vielu: katra vides daļiņa svārstās ap savu līdzsvara stāvokli, kas visu laiku paliek uz vietas. No citas puses, daļinai iesvārstot savus kaimiņus, tā nodod tiem daļu savas enerģijas, t.i. vilnis vidē pārnes enerģiju.
1.att.
Apskatīsimies, kā vilnis izskatās grafiski (Att. A). Katra vides daļiņa (dažas no tām ir apzīmētas ar zaļiem punktiem) svarstās ap savu līdzsvara stāvokli, kas ir uz horizontālās ass, nepārvietojoties horizontālajā virzienā. Vilnis (zilā līnija), savukārt, pārvietojas pa labi, pārnesot sev līdzi enerģiju. Te ir jāuzmanās ar asīm: uz horizontālās x ass ir atlikta izvēlētās vides daļiņas pozīcija telpā, bet uz vertikālās y ass — daļiņas novirze no līdzsvara stāvokļa.
Noteiksim parametrus, kas raksturo vilni. Daļa no tiem sakrīt ar svārstību parametriem (periods \(T\), frekvence \(f\), amplitūda \(y_\mathrm{max}\)) — galu galā vilnis ir svārstības, kas izplatās telpā — bet ir arī citi parametri, kas piemīt tikai viļņiem (2. attēls).
2.att.
Viļņa garums \(\lambda\) ir minimālais attālums telpā starp diviem blakus esošiem viļņa maksimumiem vai minimumiem. Viļņa garuma SI mērvienība \([\lambda]=m\).
Viļņa periods \(T\) ir laiks, kas ir nepieciešams, lai vilnis pārvietotos vidē par vienu viļņa garumu. Perioda SI mērvienība \([T]=s\).
Viļņa frekvence \(f\) ir periodam apgrieztais lielums, kas parāda, par cik viļņa garumiem vilnis pārvietojas vidē laika vienībā (SI — 1 sekundē). Frekvences SI mērvienība \([f]=Hz=\frac{1}{s}\).
Viļņa izplatīšanās ātrums \(c \) ir ātrums, ar kuru vilnis pārvietojas vidē. To var izteikt kā attiecību viļņa garumam pret periodu: \(c=\frac{\lambda}{T}\) jeb kā reizinājumu viļņa garumam ar frekvenci: \(c=\lambda{f}\). Viļņa izplatīšanās ātruma SI mērvienība \([c]=\frac{m}{s}\).
Viļņa amplitūda \(y_\mathrm{max}\) ir vides daļiņas maksimālā novirze no līdzsvara stāvokļa izvēlētajā telpas punktā. Amplitūdas SI mērvienība \([y_\mathrm{max}]=m\).
Garenviļņi un šķērsviļņi
Vides daļiņu svārstību virziens un viļņa izplatīšanās virziens nav atkarīgi viens no otra. Šajā sakarā parasti apskata divus gadījumus.
Ja svārstības notiek tajā pašā virzienā, gar kuru izplatās vilni, tad vilni sauc par garenvilni. Formāli var arī teikt, ka garenvilnī jebkuras vides daļiņas novirzes vektors vienmēr ir paralēls viļņa ātruma vektoram, t.i. \(\overrightarrow{y}\parallel\overrightarrow{c}\). Garenviļņi fiziski izskatās kā vides izretinājumu un sablīvējumu mainīšanās (1. attēls). Svarīgākie garēnviļņu piemēri ir skaņa gāzēs un triecienviļņi.
1.att.
Cits variants ir, ja vides daļiņu svarstības notiek perpendikulāri viļņa izplatīšanas virzienam. Šādā gadījumā runa par šķērsviļņiem. Formāli var arī teikt, ka šķērsvilnī jebkuras vides daļiņas novirzes vektors vienmēr ir perpendikulārs viļņa ātruma vektoram, t.i. \(\overrightarrow{y}\perp\overrightarrow{c}\) (2. attēls). Kā mehānisko šķērsviļņu piemēru var minēt viļņus uz stīgām un membrānām. Arī skaņa, kad tā izplatās cietos ķermeņos, var realizēties kā šķērsvilnis.
2.att.
Ir vērts piebilst, ka visiem labi pazīstami viļņi uz ūdens virsmas nav nedz garenviļņi, nedz šķērsviļņi: ūdens daļiņas svārstību laikā pārvietojās pa slēgtām nelineārām trajektorijām.
Viļņu īpašības
Viļņi var izplatīties dažādos veidos atkarībā no vides (vai arī vižu) īpašībām. Ar viļņu izplatīšanās ir saistīti vairākas viļņu īpašības, kā, piemēram, atstarošanās, laušana, interference un difrakcija.
Izplatīšanās homogēnā un nehomogēnā vidē
Apskatīsim situāciju, kad homogēnā vidē izplatās vilnis. Ilustrācijai var iedomāties, ka liela ezera vidū uz ūdens virsmas svārstās boja, radot ap sevi viļņus — uz ūdens virsmas rodas ''apļi''.
Aprakstoši, par viļņa izpaltīšanas virzienu var uzskatīt virzienu, kas ir perpendikulārs šādiem ''apļiem'' dotajā vides punktā (formāli korekta definīcija ir nedaudz sarežģītāka, bet lietas būtību tas nemaina). Ir ērti ieviest arī jēdzienu par viļņa staru: līniju, kas katrā savā punktā ir vērsta virzienā, kurā izplatās vilnis. Attēlos daži no viļņa stariem ir parādīti ar sarakanām līnijām.
1.att. 2.att.
Ja vide ir homogēna, tad viļņu stari ir taisni (1. attēls). Ja vide nav homogēna, tad viļņu stari noliecas no taisnes (2. attēls).
Atstarošanās
Kad vilnis nonāk uz robežu ar citu vidi, tas (daļēji vai pilnīgi) no šīs robežas atstarojas. Kā piemēru var iedomāties jūras viļņus, kas atstarojas no klinšaina krasta vai skaņu, kas atstarojas no sienas, veidojot atbalsu. Atstarošanās vienmēr notiek tā, ka leņķis, ko kritošā viļņa stari veido ar perpendikulu virsmai krišanas punktā (krišanas leņķis), ir vienāds ar leņķi, ko atstarotā viļņa stari veido ar to pašu perpendikulu (atstarošanas leņķi) (3. attēls).
3.att.
Laušana
Ja vilnis var izplatīties divās vidēs, tad, nonākot uz vižu sadales robežu, tas var ne tikai atstaroties, bet, ieejot otrajā vidē, arī lūzt. Pārejot otrajā vidē, lauztā viļņa stari pagriežas attiecībā pret kritošā viļņa stariem. (4. attēls). Piemēram, zemestrīču laikā seismiskie viļņi, kas izplatās Zemes garozā var pāriet okeāna ūdenī, radot milžu viļņus — cunami. Šajā pārejā mainās arī viļņu izplatīšanas virziens — notiek viļņu laušana.
4.att.
Superpozīcija
Mēs parunājām par to, kā vilnis izplatās vidē, bet kas notiek, ja vienā vidē izplatās vairāki viļņi?
Apskatīsim situāciju, kad divi izolēti viļņi (impulsi) izplatās vienā vidē viens otram pretī (5. attēls). Var redzēt, ka viens vilnis iziet otram cauri, it kā otrais vilnis vispār neeksistētu, bet tajā laikā, kad viļņi atrodas vienā telpas apgabalā, tie matemātiski saskaitās. Šī atziņa ir vārdisks formulējums superpozīcijas principam.
5.att.
Interference
Apskatīsim situāciju, kad vidē darbojas divi avoti, kuriem ir vienādas frekvences, piemēram, tie varētu būt divi skaļruņi, kas atskaņo vienu un to pašu audioierakstu. Balstoties uz superpozīcijas principu, mēs varam vizualizēt, kā izskatīsies viļņu aina, ko šie skaļruņi radīs telpā (6. attēls).
6.att. 7.att.
Šī aina visu laiku mainās, bet ja to novidejo (7. attēls), var redzēt, ka ir telpas reģioni, kuros divi viļņi viens otru pastiprina (attēlā — tumšāki), un ir arī punkti, kuros viļņi viens otru pavājina (attēlā — gaišāki). Parādību, kad vidē, kurā darbojas divi vai vairāki avoti, var novērot stacionāro intensitātes sadalījuma ainu, sauc par interferenci. Apskatītajā situācijā, pastaigājoties pa telpu ap skaļruņiem, skaņa kļūs skaļāka un klusāka, pie tā, nostājoties uz sarkanām nepārtrauktām līnijām, skaņa būs visskaļāka, bet uz zilām raustītām līnijām — visklusāka.
Difrakcija
Mēs redzējām, ka homogēnā vidē viļņi izplatās pa taisni. Ja vidē ielikt šķērsli, kuram cauri viļņi netiek, aiz šķēršļa veidojas ēna. Šī parādība ir labi pazīstama gaismai, bet piemīt arī citiem viļņiem, tai skaitā arī mehāniskajiem. Bet ne aiz visiem šķēršļiem veidojas skaidra ēna. Piemēram, ja nostāties aiz kolonnas, var joprojām skaidri dzirdēt, ko saka cilvēks otrā kolonnas pusē — skaņa it kā apliecas ap šķērsli. Parādību, kad viļņi iekļūst ģeometriskās ēnas apgabalā, sauc par difrakciju (8. attēls).
8.att.
To, vai aiz šķēršļa būs novērojama skaidra ēna, vai difrakcijas dēļ tajā iekļūs daļa no kritošā viļņa, nosaka šķēršļa izmērs \(d\): difrakcija būs ievērojama tikai tad, ja šķērslis pēc izmēra ir salīdzināms ar viļņa garumu, t.i. ja \(d\approx\lambda\).